Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Cumulative Distribution Function mean?
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X {\displaystyle X} , or just distribution function of X {\displaystyle X} , evaluated at x {\displaystyle x} , is the probability that X {\displaystyle X} will take a value less than or equal to x {\displaystyle x} .
Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by an upwards continuous monotonic increasing cumulative distribution function F : R → [ 0 , 1 ] {\displaystyle F:\mathbb {R} \rightarrow [0,1]} satisfying lim x → − ∞ F ( x ) = 0 {\displaystyle \lim _{x\rightarrow -\infty }F(x)=0} and lim x → ∞ F ( x ) = 1 {\displaystyle \lim _{x\rightarrow \infty }F(x)=1} .
In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to x {\displaystyle reference
Posted on 31 Oct 2024, this text provides information on Miscellaneous in Maths related to Maths. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others