Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Gradient mean?
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) ∇ f {\displaystyle \nabla f} whose value at a point p {\displaystyle p} is the vector whose components are the partial derivatives of f {\displaystyle f} at p {\displaystyle p} . That is, for f : R n → R {\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} } , its gradient ∇ f : R n → R n {\displaystyle \nabla f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} is defined at the point p = ( x 1 , … , x n ) {\displaystyle p=(x_{1},\ldots ,x_{n})} in n-dimensional space as the vector:
∇ f ( p ) = [ referencePosted on 31 Dec 2024, this text provides information on Miscellaneous in Computing related to Computing. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others