Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Little Endian mean?
In computing, endianness is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most significant byte of a word at the smallest memory address and the least significant byte at the largest. A little-endian system, in contrast, stores the least-significant byte at the smallest address.
Endianness may also be used to describe the order in which the bits are transmitted over a communication channel, e.g., big-endian in a communications channel transmits the most significant bits first. Bit-endianness is seldom used in other contexts.
Computers store information in various-sized groups of binary bits. Each group is assigned a number, called its address, that the computer uses to access that data. On most modern computers, the smallest data group with an address is eight bits long and is called a byte. Larger groups comprise two or more bytes, for example, a 32-bit word contains four bytes. There are two possible ways a computer could number the individual bytes in a larger group, starting at either end. Both types of endianness are in widespread use in digital electronic engineering. The initial choice of endianness of a new design is often arbitrary, but later technology revisions and updates perpetuate the existing endianness to maintain backward compatibility.
Internally, any given computer will work equally well regardless of what endianness it uses since its hardware will consistently use the same endianness to both store and load its data. For this reason, programmers and computer users normally ignore the endianness of the computer they are working with. However, endianness can become an issue when moving data external to the computer – as when transmitting data between different computers, or a programmer investigating internal computer bytes of data from a memory dump – and the endianness used differs from expectation. In these cases, the endianness of the data must be understood and accounted for. Bi-endianness is a feature supported by numerous computer architectures that feature switchable endianness in data fetches and stores or for instruction fetches.
Big-endianness is the dominant ordering in networking protocols, such as in the internet protocol suite, where it is referred to as network order, transmitting the most significant byte first. Conversely, little-endianness is the dominant ordering for processor architectures (x86, most ARM implementations, base RISC-V implementations) and their associated memory. File formats can use either ordering; some formats use a mixture of both or contain an indicator of which ordering is used throughout the file.
The styles of little- and big-endian may also be used more generally to characterize the ordering of any representation, e.g. the digits in a numeral system or the sections of a date. Numbers in positional notation are generally written with their digits in big-endian order, even in right-to-left scripts. Similarly, programming languages use big-endian digit ordering for numeric literals.
referencePosted on 21 Dec 2024, this text provides information on Miscellaneous in Computer Assembly Language related to Computer Assembly Language. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others