Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Linear Energy Transfer mean?
In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter.
It is identical to the retarding force acting on a charged ionizing particle travelling through the matter. By definition, LET is a positive quantity. LET depends on the nature of the radiation as well as on the material traversed.
A high LET will attenuate the radiation more quickly, generally making shielding more effective and preventing deep penetration. On the other hand, the higher concentration of deposited energy can cause more severe damage to any microscopic structures near the particle track. If a microscopic defect can cause larger-scale failure, as is the case in biological cells and microelectronics, the LET helps explain why radiation damage is sometimes disproportionate to the absorbed dose. Dosimetry attempts to factor in this effect with radiation weighting factors.
Linear energy transfer is closely related to stopping power, since both equal the retarding force. The unrestricted linear energy transfer is identical to linear electronic stopping power, as discussed below. But the stopping power and LET concepts are different in the respect that total stopping power has the nuclear stopping power component, and this component does not cause electronic excitations. Hence nuclear stopping power is not contained in LET.
The appropriate SI unit for LET is the newton, but it is most typically expressed in units of kiloelectronvolts per micrometre (keV/μm) or megaelectronvolts per centimetre (MeV/cm). While medical physicists and radiobiologists usually speak of linear energy transfer, most non-medical physicists talk about stopping power.
referencePosted on 03 Dec 2024, this text provides information on Miscellaneous in Physics Related related to Physics Related. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others