Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Multi-level Cell mean?
In electronics, a multi-level cell (MLC) is a memory cell capable of storing more than a single bit of information, compared to a single-level cell (SLC) which can store only one bit per memory cell. A memory cell typically consists of a single floating gate MOSFET (metal-oxide-semiconductor field-effect transistor), thus multi-level cells reduce the number of MOSFETs required to store the same amount of data as single-level cells.
Triple-level cells (TLC) and quad-level cells (QLC) are versions of MLC memory, which can store three and four bits per cell, respectively. The name "multi-level cell" is sometimes used specifically to refer to the "two-level cell". Overall, the memories are named as follows:
Single-Level Cell or SLC (1 bit per cell)Multi-Level Cell or MLC (2 bits per cell) alternatively Double-Level Cell or DLCTriple-Level Cell or TLC (3 bits per cell) or 3-Bit MLCQuad-Level Cell or QLC (4 bits per cell)Penta-Level Cell or PLC (5 bits per cell) – currently in developmentTypically, as the 'level' count increases, performance (speed and reliability) and consumer cost decrease; however this correlation can vary between manufacturers.
Examples of MLC memories are MLC NAND flash, MLC PCM (phase change memory), etc. For example, in SLC NAND flash technology, each cell can exist in one of the two states, storing one bit of information per cell. Most MLC NAND flash memory has four possible states per cell, so it can store two bits of information per cell. This reduces the amount of margin separating the states and results in the possibility of more errors. Multi-level cells which are designed for low error rates are sometimes called enterprise MLC (eMLC).
New technologies, such as multi-level cells and 3D Flash, and increased production volumes will continue to bring prices down.
referencePosted on 02 Jan 2025, this text provides information on Miscellaneous in Electronics related to Electronics. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others