Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Quaternion mean?
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative.
Quaternions are generally represented in the form
a + b i + c j + d k {\displaystyle a+b\ \mathbf {i} +c\ \mathbf {j} +d\ \mathbf {k} }where a, b, c, and d are real numbers; and i, j, and k are the basic quaternions.
Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.
In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, and therefore also a domain. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by H . {\displaystyle \mathbb {H} .} It can also be given by the Clifford algebra classifications Cl 0 , 2 ( R ) ≅ Cl 3 , 0 + ( R ) . {\displaystyle \operatorname {Cl} _{0,2}(\mathbb {R} )\cong \operatorname {Cl} _{3,0}^{+}(\mathbb {R} ).} In fact, it was the first noncommutative division algebra to be discovered.
According to the Frobenius theorem, the algebra H {\displaystyle \mathbb {H} } is one of only two finite-dimensional division rings containing a proper subring isomorphic to the real numbers; the other being the complex numbers. These ri reference
Full Form | Category |
---|---|
Quality Trailer Manufacturing | General |
Quaternion | Governmental |
Posted on 03 Jan 2025, this text provides information on Miscellaneous in Governmental related to Governmental. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others