Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
What is Supremum mean?
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S {\displaystyle S} of a partially ordered set P {\displaystyle P} is a greatest element in P {\displaystyle P} that is less than or equal to all elements of S , {\displaystyle S,} if such an element exists. Consequently, the term greatest lower bound (abbreviated as GLB) is also commonly used.
The supremum (abbreviated sup; plural suprema) of a subset S {\displaystyle S} of a partially ordered set P {\displaystyle P} is the least element in P {\displaystyle P} that is greater than or equal to all elements of S , {\displaystyle S,} if such an element exists. Consequently, the supremum is also referred to as the least upper bound (or LUB).
The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.
The concepts of infimum and supremum are similar to minimum and maximum, but are more useful in analysis because they better characterize special sets which may have no minimum or maximum. For instance, the set of positive real numbers R + {\displaystyle \mathbb {R} ^{+}} (not including 0 {\displaystyle 0} reference
Posted on 27 Dec 2024, this text provides information on Miscellaneous in Maths related to Maths. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Write Your Comments or Explanations to Help Others