In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
| A ∪ B | = | A | + | B | − | A ∩ B | , {\displaystyle |A\cup B|=|A|+|B|-|A\cap B|,}where A and B are two finite sets and |S| indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.
The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A, B and C is given by
| A ∪ B ∪ C | = | A | + | B | + | C | − | A ∩ B | − | A ∩ C | − | B ∩ C | + | A ∩ B ∩ C | . {\displaystyle |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|.}This formula can be verified by counting how many times each region in the Venn diagram figure is included in the right-hand side of the fo reference
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Allow To Receive Free Coins Credit 🪙