Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation (ANSI/ASHRAE Standard 55). The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort. Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC (heating, ventilation, and air conditioning) design engineers.
Thermal neutrality is maintained when the heat generated by human metabolism is allowed to dissipate, thus maintaining thermal equilibrium with the surroundings. The main factors that influence thermal comfort are those that determine heat gain and loss, namely metabolic rate, clothing insulation, air temperature, mean radiant temperature, air speed and relative humidity. Psychological parameters, such as individual expectations, also affect thermal comfort. The thermal comfort temperature may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity.
The Predicted Mean Vote (PMV) model stands among the most recognized thermal comfort models. It was developed using principles of heat balance and experimental data collected in a controlled climate chamber under steady state conditions. The adaptive model, on the other hand, was developed based on hundreds of field studies with the idea that occupants dynamically interact with their environment. Occupants control their thermal environment by means of clothing, operable windows, fans, personal heaters, and sun shades. The PMV model can be applied to air-conditioned buildings, while the adaptive model can be applied only to buildings where no mechanical systems have been installed. There is no consensus about which comfort model should be applied for buildings that are partially air-conditioned spatially or temporally.
Thermal comfort calculations in accordance with the ANSI/ASHRAE Standard 55, the ISO 7730 Standard and the EN 16798-1 Standard can be freely performed with either the CBE Thermal Comfort Tool for ASHRAE 55, with the Python package pythermalcomfort and with the R package comf.
referenceEver curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Allow To Receive Free Coins Credit 🪙