Dijkstra's algorithm ( DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.
The algorithm exists in many variants. Dijkstra's original algorithm found the shortest path between two given nodes, but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.
For a given source node in the graph, the algorithm finds the shortest path between that node and every other.: 196–206 It can also be used for finding the shortest paths from a single node to a single destination node by stopping the algorithm once the shortest path to the destination node has been determined. For example, if the nodes of the graph represent cities and edge path costs represent driving distances between pairs of cities connected by a direct road (for simplicity, ignore red lights, stop signs, toll roads and other obstructions), Dijkstra's algorithm can be used to find the shortest route between one city and all other cities. A widely used application of shortest path algorithms is network routing protocols, most notably IS-IS (Intermediate System to Intermediate System) and Open Shortest Path First (OSPF). It is also employed as a subroutine in other algorithms such as Johnson's.
The Dijkstra algorithm uses labels that are positive integers or real numbers, which are totally ordered. It can be generalized to use any labels that are partially ordered, provided the subsequent labels (a subsequent label is produced when traversing an edge) are monotonically non-decreasing. This generalization is called the generic Dijkstra shortest-path algorithm.
Dijkstra's algorithm uses a data structure for storing and querying partial solutions sorted by distance from the start. While the original algorithm uses a min-priority queue and runs in time Θ ( ( | V | + | E | ) log | V | ) {\displaystyle \Theta ((|V|+|E|)\log |V|)} (where | V | {\displaystyle |V|} is the number of nodes and | E | {\displaystyle |E|} is the number of edges), it can also be implemented in Θ ( | reference
Ever curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Allow To Receive Free Coins Credit 🪙