Word-sense disambiguation (WSD) is an open problem in computational linguistics concerned with identifying which sense of a word is used in a sentence. The solution to this issue impacts other computer-related writing, such as discourse, improving relevance of search engines, anaphora resolution, coherence, and inference.
Due to the fact that natural language requires reflection of neurological reality, as shaped by the abilities provided by the brain's neural networks, computer science has had a long-term challenge in developing the ability in computers to do natural language processing and machine learning.
Many techniques have been researched, including dictionary-based methods that use the knowledge encoded in lexical resources, supervised machine learning methods in which a classifier is trained for each distinct word on a corpus of manually sense-annotated examples, and completely unsupervised methods that cluster occurrences of words, thereby inducing word senses. Among these, supervised learning approaches have been the most successful algorithms to date.
Accuracy of current algorithms is difficult to state without a host of caveats. In English, accuracy at the coarse-grained (homograph) level is routinely above 90%, with some methods on particular homographs achieving over 96%. On finer-grained sense distinctions, top accuracies from 59.1% to 69.0% have been reported in evaluation exercises (SemEval-2007, Senseval-2), where the baseline accuracy of the simplest possible algorithm of always choosing the most frequent sense was 51.4% and 57%, respectively.
referenceEver curious about what that abbreviation stands for? fullforms has got them all listed out for you to explore. Simply,Choose a subject/topic and get started on a self-paced learning journey in a world of fullforms.
Allow To Receive Free Coins Credit 🪙